Model Paper

GOVERNMENT COLLEGE UNIVERSITY, FAISALABAD

BA/BSc (Part-I) Annual 2017

Subject: Mathematics (A-Course) Paper: (1) Course Code: MTH-301

Course Title: Calculus and Analytic Geometry

Time Allowed: 03:00 Hours Maximum Marks: 100 Pass Marks: 33%

Note: Attempt Six questions in all, selecting two question from section I and II each and one queston from III and IV.

Section-1

Question # 1: (a) Show that
$$\lim_{x\to 0} \frac{\cos x - 1}{x} = 0$$
. (9,8)

(b) If
$$P_n(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$$
, then prove that $\lim_{x \to a} P_n(x) = P_n(a)$.

Question # 2: (a) Let v be the velocity of a particle at any given time t. Deduce that the acceleration of the particle at this instant is $\frac{dv}{dt}$. (9,8)

(b) Find the root of the equation $4 \sin x = e^x$ in the interval (0, 0.5).

Question #3: (a) Show that
$$\frac{d^n}{dx^n} (\frac{\ln x}{x}) = \frac{(-1)^n n!}{x^{n+1}} [\ln x - 1 - \frac{1}{2} - \frac{1}{3} - \dots - \frac{1}{n}].$$
 (9.8)

(b) Use L'Hospital rule to prove that
$$\lim_{x\to\infty} \left[\frac{a^{\frac{1}{b^2}} + b^{\frac{1}{2}}}{2} \right]^2 = \sqrt{ab}, a > 0, b > 0.$$

Question # 4: (a) Apply Taylor's theorem to prove that

$$(a+b)^m = a^m + \frac{m}{1!}a^{m-1}b + \frac{m(m-1)}{2!}a^{m-2}b^2 + \dots$$
 for all real $m, a > 0, -a < b < a$.

(b) Evaluate the given limits:
$$\lim_{x\to 0} \frac{\tanh x - \sinh x}{x^2}$$
. (9,8)

Section-II

Question # 5: (a) Find equations of tangent and normal to each of the following curves at the indicated point: $c^2(x^2 + y^2) = x^2 y^2$ at $(\frac{c}{\cos \theta}, \frac{c}{\sin \theta})$.

(b) Find the pedal equation of
$$r^m = a^m \cos m\theta$$
.

(9,8)

Question # 6: (a) Show that
$$\tan \psi = \frac{x \frac{dy}{dx} - y}{y \frac{dy}{dx} + x}$$
. (9,8)

(b) Sketch the graph of the given curves $r^2 = a \sin 2\theta$.

Question #7: (a) Show that the shortest between the lines x + a = 2y = -12z and

$$x = y + 2a = 6(z - a)$$
 is $2a$. (9,8)

(b) Express the given equation in cylindrical coordinates: $(x+y)^2 - z^2 + 4 = 0$.

Question # 8: (a) Find an equation of the cone whose directrix is Directrix: $y^2=x$, z=4 and whose vertex is at Λ (0,2,0) (b) Find an equation of the tangent plane to the sphere $x^2+y^2+z^2-4x+2y-6z=0$ at the point P(3,2,5)(9,8) Section III Question # 9: (a) Find the asymptotes of $2xy + 2y = (x-2)^2$ (8, 8)(b) Show that the height of an open cylinder of given surface S and greatest Volume is equal to the radius of the base. Question # 10: (a) Find the equations of the tangents at the multiple points of the curve (8, 8) $(y-z)^2 = x (x-1)^2$ (b) Find the intrinsic equation of $\gamma = a(1-\cos\theta)$ Section IV Question # 11: (a) Evaluate $\int x^5 e^{x^3} dx$. (8, 8)(b) Integrate $1/(x^4 + 1)$ with respect to x. Question # 12: (a) Calculate $\int_0^{\pi/2} \ln \sin x \, dx$. (8, 8)

(b) Use Trapezoidal Rule to approximate the integral $\int_0^{\pi} \sin x \ dx$ with n=6.

Model Paper

GOVERNMENT COLLEGE UNIVERSITY, FAISALABAD

B.A/B.Sc (Part-II) Annual 2017

Subject: Mathematics (A-Course)

Paper: (II)

Course Code: MTH-401

Course Title: Linear Algebra and Differntial Equations

Time Allowed: 03:00 Hours Maximum Marks: 100 Pass Marks: 33%

Note: Attempt Six questions in all selecting two questions from section I & IV each and one

Note: Attempt Six questions in all, selecting two questions from section I & IV each and one Question from II & III.

SECTION-I

Q.1 (a) Prove that the product of matrices. (9,1)

$$A = \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{bmatrix}$$

is the zero matrix if α and β differ by $\frac{(2n+1)\pi}{2}$, where n is an integer.

(b) Prove that
$$\begin{vmatrix} a^3 & 3a^2 & 3a & 1 \\ a^2 & a^2 + 2a & 2a + 1 & 1 \\ a & 2a + 1 & a + 2 & 1 \\ 1 & 3 & 3 & 1 \end{vmatrix} = (a - 1)^6.$$

Q.2 (a) A yarn merchant sells brands A, B, C of yarn each of which is a blend of Pakistani,

Egyptian and American cotton in ratio 1:2:1, 2:1:1 and 2:0:2, respectively. If one

kilogram of A, B, C costs 40,50 and 60 rupees respectively, find the cost of a kilogram of

cotton of each country. (9,8)

(b) Let A and B be nonsingular matrices of the same order than AB is a nonsingular. Then prove that $(AB)^{-1} = B^{-1}A^{-1}$.

Q.3 (a) Show that the vectors
$$\{(1,2,3),(0,1,2),(0,0,1)\}$$
 generate \mathbb{R}^3 . (9,8)

(b) Let U and W be subspaces of a vector space V over a field F. Then prove that $U \cap W$ is also a subspace of V.

Q.4 (a) A linear transformation
$$T: U \to V$$
 is one-one if and only if N(T)={0}. (9,8)

(b) Find a basis and dimension of R(T) where $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by $T(x_1, x_2, x_3) = (x_1 + 2x_2 - x_3, x_2 + x_3, x_1 + x_2 - 2x_3).$

SECTION-II

Q.5 (a) Let $u = (u_1, u_2)$ and $v = (v_1, v_2)$ belong to R^2 verify that $\langle u, v \rangle = u_1 v_1 - 2u_1 v_2 - 2u_2 v_1 + 5u_2 v_2 \text{ is an inner product on } R^2.$ (8,8)

(b) Show that the rows (columns) of the matrix
$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 form an orthonormal set.

Q.6 (a) Find the eigen values and corresponding eigen vectors of the matrix
$$\begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 4 \end{bmatrix}$$
 (8,8)

(b) If λ is an eigen value of an orthonormal matrix, then $|\lambda| = 1$.

SECTION-III

Q.7 (a) Solve
$$x \frac{dy}{dx} + y = y^2 \ln x$$
. (8,8)

(b) Solve
$$p = \tan\left(x - \frac{p}{1+p^2}\right)$$
.

Q.8 (a) Solve
$$(xy^2 + 2x^2y^3)dx + (x^2y - x^3y^2)dy = 0$$
. (8.8)

(b) Find an equation of orthonormal trajectory of the curve $r^n \cos n\theta = a^n$.

SECTION-IV

Q.9 (a) Solve
$$(D^3 - D^2 + D - 1)y = 4\sin x$$
. (9,8)

(b) Solve
$$x^4 \frac{d^3 y}{dx^3} + 2x^3 \frac{d^2 y}{dx^2} - x^2 \frac{dy}{dx} + xy = 1$$
.

Q.10 (a) Solve particular solution:
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = (1 + e^{-x})^{-1}.$$
 (9,8)

(b) Solve:
$$\frac{d^2y}{dx^2} + y = \sec^3 x.$$

Q.11 (a) Compute (i)
$$L(\sin at)$$
 (ii) $L^{-1}\left(\frac{3s+1}{s^2-6s+18}\right)$. (9,8)

(b) Apply the power series method to solve: y'-ky=0.

(a)
$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = te'; \quad y(0) = 0 = y'(0).$$

(b)
$$\frac{dy}{dt} + 4y = 2e^t - 4e^{-t}; \quad y(0) = 0.$$